K=制動係数 (Sが 9.6m のとき 0.030)

P=制動圧力(t)

S=制動を受ける有効長 (9.6 m または 13.2 m)

この式による実際計算値の例をあげるとつぎのとおり。

15 t 無 が い 車 (トム形式)

|    | )  | ッ     | チ      | 1   | 2    | 3    | 4    | 5    |
|----|----|-------|--------|-----|------|------|------|------|
| 制動 | 動量 | (t-m) | 長けたのとき | 8.8 | 17.2 | 26.1 | 34.5 | 46.9 |
|    |    |       | 短けたのとき | 6.4 | 12.5 | 19.0 | 25.1 | 34.1 |

30 t 無 が い 車 (トキ形式)

|    | 1  | ッ     | チ      | 1    | 2    | 3    | 4    | 5    |
|----|----|-------|--------|------|------|------|------|------|
| 制動 | 動量 | (t-m) | 長けたのとき | 12.7 | 24.7 | 37.7 | 49.4 | 67.0 |
|    |    |       | 短けたのとき | 9.2  | 17.9 | 27.2 | 35.9 | 48.7 |

また貨車が制動を受ける前後の速度の関係式は近似的に次式

で表わせる。

$$V_2 = \sqrt{V_1^2 + \frac{2gH}{1+\eta} - \frac{2gE}{W(1+\eta)}}$$

V₂=減速度 m/sec

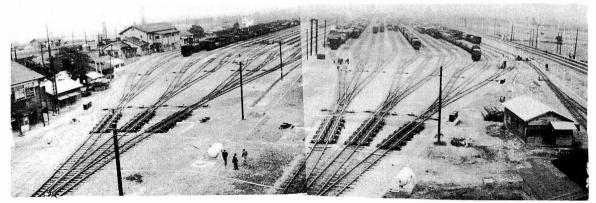
V1=初速度 m/sec

g=重力加速度 9.8 m/sec<sup>2</sup>

H=カーリターダの両端より軸距の $\frac{1}{2}$ だけ離れた 2 点間の落差 (m)

E=制動量(t-m)

面図


W=貨車の重量(t)トム=23.8 t トキ=51 t

η=車両の回転部に対する補正 トム=0.0448

トキ=0.0395

(3) リターダ操車場のハンプの勾配(こうばい)

リターダヤードにおいては人為的に貨車に制動をかけないか ち,一度リターダを離れた貨車は制御する方法がない。したが



5. カ ー リ タ ー ダ (吹田操車場)